Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain.
نویسندگان
چکیده
Somata of primary sensory neurons are thought to contribute to the ectopic neural discharge that is implicated as a cause of some forms of neuropathic pain. Spiking is triggered by subthreshold membrane potential oscillations that reach threshold. Oscillations, in turn, appear to result from reciprocation of a fast active tetrodotoxin-sensitive Na+ current (INa+) and a passive outward IK+ current. We previously simulated oscillatory behavior using a transient Hodgkin-Huxley-type voltage-dependent INa+ and ohmic leak. This model, however, diverged from oscillatory parameters seen in live cells and failed to produce characteristic ectopic discharge patterns. Here we show that use of a more complete set of Na+ conductances--which includes several delayed components--enables simulation of the entire repertoire of oscillation-triggered electrogenic phenomena seen in live dorsal root ganglion (DRG) neurons. This includes a physiological window of induction and natural patterns of spike discharge. An INa+ component at 2-20 ms was particularly important, even though it represented only a tiny fraction of overall INa+ amplitude. With the addition of a delayed rectifier IK+ the singlet firing seen in some DRG neurons can also be simulated. The model reveals the key conductances that underlie afferent ectopia, conductances that are potentially attractive targets in the search for more effective treatments of neuropathic pain.
منابع مشابه
Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain.
Abnormal afferent discharge originating at ectopic sites in injured primary sensory neurons is thought to be an important generator of paraesthesias, dysaesthesias, and chronic neuropathic pain. We report here that the ability of these neurons to sustain repetitive discharge depends on intrinsic resonant properties of the cell membrane and that the prevalence of this characteristic increases af...
متن کاملBurst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials.
Afferent discharge generated ectopically in the cell soma of dorsal root ganglion (DRG) neurons may play a role in normal sensation, and it contributes to paraesthesias and pain after nerve trauma. This activity is critically dependent on subthreshold membrane potential oscillations; oscillatory sinusoids that reach threshold trigger low-frequency trains of intermittent spikes. Ectopic firing m...
متن کاملSpinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain.
Primary sensory neurons with myelinated axons were examined in vitro in excised whole lumbar dorsal root ganglia (DRGs) taken from adult rats up to 9 days after tight ligation and transection of the L(5) spinal nerve (Chung model of neuropathic pain). Properties of subthreshold membrane potential oscillations, and of repetitive spike discharge, were examined. About 5% of the DRG neurons sampled...
متن کاملMultiple interacting sites of ectopic spike electrogenesis in primary sensory neurons.
Ectopic discharge generated in injured afferent axons and cell somata in vivo contributes significantly to chronic neuropathic dysesthesia and pain after nerve trauma. Progress has been made toward understanding the processes responsible for this discharge using a preparation consisting of whole excised dorsal root ganglia (DRGs) with the cut nerve attached. In the in vitro preparation, however...
متن کاملBlockade of Persistent Sodium Currents Contributes to the Riluzole-Induced Inhibition of Spontaneous Activity and Oscillations in Injured DRG Neurons
In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impuls...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2009